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EXECUTIVE SUMMARY

Proficiency testing in sensory analysis is an important step which aims to demonstrate that
data obtained from trained sensory assessors are as reliable as one would expect from any
other objective measurement tool. Sensory analysis is unique in that it uses human
assessors to measure the perception of a wide range of stimuli, as detected by the senses of
sight, sound, smell, taste and touch. Sensory measurements are perceptual translations of
physical/chemical stimuli, and as such differ from other directly physical or chemical

measurements.

The uniqueness of sensory analysis poses some specific problems for measuring the
proficiency of the sensory panel. Cultural and psychological/physiological differences
may give rise to different thresholds of perception, and the panel’s product experiences
may lead to differences in the ability to discriminate between samples. Such factors make
the job of the statistician more demanding; defining the expected level of performance in
terms of sample discrimination, for example, becomes difficult. Another issue is the
definition of a ‘true’ value or expected result, which is not so clearly defined for sensory

analysis.

There are a number of methods in the literature that could be used to evaluate the
performance of sensory panels for ranking tests. These include correlation coefficients,
Friedman test, the coefficient of concordance, the ‘egg shell’ procedure and the rank
interaction test. These methods are investigated for their potential use in proficiency
testing, and selected methods are explored further using data collected as part of two ring

trials.

This first stage of research proposes a procedure for the establishment of performance
criteria for future ring trials, and how panels can be assessed according to these measures.
Moreover, the important issue of ‘true value’ in proficiency testing seems to have been

resolved through the calculation of an ‘expected result’.
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1. INTRODUCTION

1.1 Background to Proficiency Testing

Proficiency testing in sensory analysis is an important step to demonstrate that data obtained
from human instruments are as reliable as one would expect from any objective measurement
tool. Sensory analysis is unique in that it uses human assessors to measure the perception of a
wide range of stimuli, as detected through the senses of sight, sound, smell, taste and touch.
Sensory measurements are perceptual {ranslations of physical/chemical stimuli, and as such

differ from other direct physical or chemical measurements.

The uniqueness of sensory analysis poses some specific problems for measuring the
proficiency of the instrument (panel) providing the data. Cultural and individual differences
may give rise to different thresholds of perception, and product experience of the panel may
lead to differences in the ability to discriminate between samples. Such factors make the job
of the statistician more difficult, as defining the expected level of performance in terms of

which samples are discriminated, for example, becomes difficult.

Another issue for the statistical evaluation of the data is the definition of a ‘true’ value, which
is not so clearly defined for sensory analysis. In the case of ranking, the most logical
definition is the rank order of the samples according to the way in which they were spiked.
However, care must be taken to ensure that the spiking agent does not give rise to an
unexpected interaction, thus rendering the supposed ‘true’ rank order incorrect. This issue is

even more problematic for descriptive profile data (McEwan, 2000)

This document outlines approaches to the analysis of sensory ranking data, with the specific
objective of monitoring the performance of the panel as part of a sensory proficiency testing

scheme.
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1.2 Methods Covered

There are a number of methods in the literature that could be used to evaluate the performance
of sensory panels for ranking tests. The ‘egg shell’ plot is a graphical method that allows
problem assessors to be easily identified (Appendix 6). While the ‘egg shell’ plot does not
directly address the objective of measuring panel performance, it should not be forgotten as an

aid to communication and as a diagnostic tool.

Formal methods include correlation coefficients, the coefficient of concordance, and the rank
interaction test. The rank interaction test, while having an initial appeal was rejected as being

rather complex, and questions were raised regarding the statistical distributions (Appendix 7).

The correlation coefficient is attractive in that it is simple to calculate, whilst the coefficient of
concordance offers a tool to measure the agreement between assessors in a panel, as well as
the concordance between the panel ranking and the expected (‘true’) rank. Appendix 5

explores the statistical properties of the coefficient of concordance.

1.3 Panel Performance or Assessor Performance

One important aspect to clarify at the outset, is the purpose of proficiency testing with respect

to performance of panels or performance of assessors.

It is very clear, that whether in research or commercial projects, it is the panel result that is
used to make decisions about the samples being evaluated. Therefore, proficiency testing is
about measuring the performance of a panel, not individuals in the panel. If individual
assessors perform poorly, then their data will bring down the overall performance of the

panel, and consequently the panel will not have performed well.
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However, concordance between members of the panel is of interest, as one measure of a
panel’s performance. It is measured by determining if each member of the panel provides the

same information.

This document is, therefore, concerned mainly with the performance of panels.

1.4 Document Format

Chapter 2 addresses the important issue of experimental design, whilst Chapter 3 reports on
the standard procedure for analysing rank data to determine if the samples are significantly
different (Friedman rank test), and to determine which samples are significantly different

(Studentised Range multiple comparison test).

Chapter 4 treats the important subject of expected (‘true’) result. Clearly, where samples are
not spiked in a uni-dimensional way, calculation of the true or expected rank is fundamental
to later assessment of panel performance. This chapter outlines the stages in establishing

panel performance.

Chapters 5 and 6 provide an explanation of the correlation method and coefficient of
concordance for measuring panel performance. Chapter 7 reports the results of the Friedman
test to establish significant differences between samples and also looks at the calculation of
the expected ranking. Chapter 8 works through some data for measuring panel performance.
Chapters 9 summarise the results of two ring trials conducted in 1999. Finally Chapter 10

considers how to set the performance criteria for future trials.
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2. EXPERIMENTAL DESIGN

2.1 Introduction

Statistically designed and analysed comparative experiments are of greatest value in those
experimental circumstances where treatment (or Sample) effects are likely to be small
compared to the underlying variation. Statistical analysis is carried out to estimate the effects
of treatment and to assign well-founded estimates of variation to treatment effects. This in

turn leads to either tests of significance or to confidence intervals.

In order to satisfy the assumptions of ‘statistical’ analysis there should be elements of
randomisation in the design. To increase the precision of the experiment in estimating
differences between treatments, it is usual to identify known sources of extraneous variation
and to seek to ‘block’ by these factors i.e. incorporate them into the design of the experiment.
For sensory profiling experiments these are Assessor, Order of Sample Presentation and the
Effects of Previous Sample. The interpretation of treatment effects is greatly facilitated by the
adoption of a factorial treatment structure for the Samples. The precision of an experiment

can be improved by increasing the replication.

For sensory science, in general, there has been a lack of awareness of the advantages of
carefully designing sensory experiments (Hunter, 1996; MacFie et al., 1989) and of
developments in the analysis of such data (Jones and Wang, 2000). Sensory profiling
experiments, in particular, are very similar statistically to the ‘cross over’ designs used in pre-
clinical and clinical medicine (Jones and Kenward, 1989). These designs were originally used

for in vivo animal studies in the biological sciences.

Below the logic of proposed designs for sensory profiling is developed. It is recommended
that such designs are also used in Ranking experiments. This is divided into three parts, first
the Assessor design, second the design of the Samples and thirdly Replication. An alternative

fuller account is given by Hunter (1996).
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2.2 The Assessor Design

It is common to find that Assessors are the largest effect in the Analysis of Variance of the
data for each attribute. This arises because Assessors use different parts of the scale.
Nevertheless, Assessors provide useful information on the differences between Samples.
Provided that each Assessor tests each Sample the same number of times, it is possible to

estimate treatment effects entirely within Assessors. Assessors are thus a block factor.

For data from Sensory Profiling experiments, ‘Order’ effects are also known to be important
(Muir and Hunter, 1991/2). A Sample tested first in a Session is usually rated differently from
the same Sample tested later in a Session. Such is the magnitude of this effect that it is
important to either randomise Order of presentation within a Session or alternatively design it

into the experiment as a block effect in addition to Assessors.

Experience indicates that Assessor and Order effects can be effectively designed to be block
effects using designs based on Latin Squares. Furthermore, if the cyclic Latin Squares due to
Williams (1949) are used as a base for the design then protection is provided against
interference effects from the Previous Sample (MacFie et al., 1989 and Hunter, 1996).
Although there is very little evidence to show that these interference effects are important
(Muir and Hunter, 1991/2), it is prudent to design the experiment so that treatment estimates
are protected. Hunter (1996) shows how Williams Latin Squares can be used to generate

statistically efficient yet practical designs for nearly all profiling experiments.

2.3 Sample Design

For many experiments it is not possible to impose a factorial treatment structure on the
Samples. However, when the Samples are from the laboratory it is usually possible to
structure them in a factorial manner. Such structuring improves the ability to interpret the
results of the experiment. A complete set of all factorial combinations is often used and can

be very helpful in identifying ‘active’ factors. In those circumstances where the number of
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factorial combinations is too numerous for one sensory experiment then fractional designs
should be considered. It is possible to find designs from the literature which allow the main
effects of three factors to be investigated with four Samples, seven factors with eight Samples

and eleven factors with twelve Samples.

2.4 Replication

Replication is primarily used to increase the precision of the Sample estimates although it
should not be used as a substitute for an undersized panel of Assessors. A secondary
advantage is that Replication allows each Assessor’s reliability (i.e. the agreement between

different ratings of the same Sample by the same Assessor) to be determined.

The word Replication is used in a number of different circumstances in Sensory Science and
does not appear to have the precise usage that is seen in the Biological Sciences. Below we
explain our understanding of Replication and following it we explore an alternative idea about

Replication.

First Scenario

In the first Replicate, the Assessors rate each Sample, if necessary spreading the assessments
over a number of Sessions. In the second and subsequent Replicates, the Assessors rate the
Samples again using a new randomisation that preserves the "blindness" of the trial. If
Assessors are given Samples in the same order in each Replicate then they will eventually
become aware of this fact and will anticipate the results thus nullifying the concept of
independent ratings. Also, different randomisations for each Replicate allows each Assessor’s

data to be independently tested for Order and Session effects.

Where the number of Samples require more than one Session per Replicate for assessment,

then it is desirable, on statistical grounds, that in each Replicate the Samples are divided into
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the Sessions differently for each Assessor. If this is not possible (i.e. when hot Samples are

being tested) then the Samples should be divided into Sessions differently in each Replicate.

Second Scenario

When more than one Session per Replicate is required the alternative to the above is to
randomly allocate each Replicate of each Sample to a session with the restriction that
Replicates of the same Sample cannot occur in the same Session. An incomplete block design
(Fully Balanced or Partially Balanced Incomplete Block Design) might be used for this
purpose. If at all possible, different randomisations of the design should be used for each

Assessor.

Overall, the “Second Scenario” offers no advantage and suffers from the disadvantage of
requiring the design to be completed in order to yield data that can be easily analysed. The
“First Strategy” can be recommended as it allows the experiment to be completed one
Replicate at a time and because it allows learning effects and/or changes in the Samples to be

easily monitored.

Finally, it is desirable (although infrequently realised) that for Replicate assessments new
Samples are drawn for each Replicate. This then allows variability between Samples of the
same product or formulation to be incorporated into the experiment. Otherwise specific

Samples are being compared without allowing for sampling or manufacturing variation.

2.5 Conclusions

Careful design of sensory experiments, using well established techniques freely available in
the literature, allows the maximum amount of information to be derived from the work of the

Sensory Laboratory.
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3. ANALYSIS OF RANKING DATA

3.1 Introduction

This chapter concentrates on the analysis of ranking data for a designated attribute as
normally undertaken by the sensory analyst to establish if there are differences between
samples. The method chosen is the Friedman rank test to establish if there are differences
between the samples. To identify if two samples are different, two methods were
investigated: a Studentised Range test (Hochberg and Tamhane, 1987) and a method proposed
by Conover (1999). The latter method was finally chosen as the multiple comparison value

calculation is based on an analysis of variance of the rank table.

Most statistical packages will allow the Friedman rank test to be undertaken. However, it is
less common to find a package that offers multiple comparison tests on non-parametric data.
For this reason the calculations are presented to allow the user to undertake the multiple

comparison test by hand (Section 3.4).

3.2 Tabulating the Data

A useful starting point for rank data is to produce a table of results (see Table 3.1) for one
replicate assessment to rank five samples on sweetness. A table is produced for each
replicate, and each replicate should be analysed separately. Table 3.1 shows the ranking
provided by each assessor, and from these data the Rank Sum of each sample can be
calculated. This gives a first impression of whether there are likely to be differences between
the samples. If the Rank Sums are similar, then this would indicate that the panel would not
have be able to discriminate between the samples. Conversely, the greater the difference

between the Rank Sums, the more likely that differences will be detected between samples.
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Table 3.1:  Example of a set of rank data where 5 apple juice samples were ranked
according to sweetness intensity.
Samples

Assessor 1 2 3 4 5

1 5 2 1 3 4

2 5 1 2 3 4

3 5 2 3 1 4

4 5 1 2 3 4

5 5 1 4 3 2

6 5 1 2 3 4

7 5 2 3 1 4

8 5 1 3 2 4

Rank Sum (ZRi) 40 11 20 19 30
TRi® 1600 121 400 361 900

Panel Rank 5 1 3 2 4
Panel Mean Rank 5.0 1.4 2.5 24 3.8

Expected Rank 5 1 2 3 4
Expected Rank Sum 40 8 16 24 32

The final two rows of Table 3.1 show the ‘expected’ rank order and ‘expected’ rank sum.
Using this information provides some initial indication as to whether the panel provided a

‘correct’ answer.

3.3 The Friedman Rank Test

Undertaking a Friedman rank test on Minitab (Version 12), a Friedman statistic (S) of 25.1
was obtained. Minitab also provides the p-value (significance level), which was p = 0.000.
This result implied that there was one or more significant differences between the samples at

more that the 0.1% level of significance.
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3.4 Identifying Sample Differences

The calculations for the Conover method are illustrated below. The first step is to work out

the value of A, using the following formula.

A:

Next the actual multiple comparison value is worked out.

IRi—Ry| =

JIA+D)(21+1

6

(8x5)(5+1)(10+1)

v

v

v

6

440

t1 -2

2.048

2.048

2.048
6.4

[ 2(0JA-ZR))

_ @¢-DaE-D

(2(8x440 — 3382) |

7x4
\ _J

(23520 - 3382) |

28

N— -

Sqrt(9.857)

[ = number of samples
J = number of assessors

RV

172

12

[ = number of samples

J = number of assessors

R, = rank sum of Sample i

R; = rank sum of Sample j

Rj2 = rank sum squared of Sample j

t,.an 1 Obtained from the Student
Tables at the desired level of
Significance (o0 = 5% here)
Degrees of freedom are (J-1)(I-1)

The comparison value of 6.4 is used to compare sample rank sums. In order to compare panel

mean ranks, this figure is divided by the number of assessors in the panel, in this case 8, to

give a value of 0.8.

The use of mean ranks is justified, as the means help establish later a more meaningful

correlation between the ‘expected rank’ and the panel ranking results.

Table 3.2 highlights which pairs of samples were different. If a sample shares the same letter

3" column), then they are not significantly different, at the 5% level of significance.
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Table 3.2:  Representation of sample differences, where samples with different letters
are significantly difference (5% significance).

Difference
Sample Mean Rank 5% 1%
2 1.4 a a
4 24 b ab
3 2.5 b ab
5 3.8 c be
1 5.0 d c
Conover -MC 0.8 1.4

3.5 Consistent Results

While the above tests demonstrate whether the panel perceived differences between the

samples, and where the differences were, this does not necessarily guarantee results consistent

with sample ‘spiking’ or with the results of other panels.

As part of a proficiency testing procedure, two ranking evaluations are undertaken. A

consistent panel should produce the same result on both occasions. However, the level of

consistency needs to be defined (see Chapters 5 and 6).
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4. THE EXPECTED RESULT

4.1 Whatis the True Value

The true value is a term used in other proficiency schemes, and is defined to be the result that
is expected based on prior knowledge of the samples. This is a relatively simple concept in

analytical tests where the result is directly related to how the samples have been modified.

In the case of ranking, the true (or expected) ranking may be defined logically when samples
have been spiked in a uni-dimensional way, for example, increase in sucrose leads to an
increase in perceived sweetness. However, the spiking ingredient could interact with the other

ingredients in the product, thus distorting this ordering.

In addition, ranking is undertaken on more complex foods, where a number of ingredients
may have been altered, as in the case of a mixture experiment. It is then very difficult to
establish the true ranking in advance of the experiment. A good set of sensory data is required
to make an accurate estimate of the true ranking. Without this, panel performance could not

be measured.

As well as defining the expected ranking, it is also important for sensory analysis to state the
level of discrimination expected both in terms of overall significance and the specific samples

that are expected to be different.

4.2 Establishing the Expected Rank Order

The expected rank order for samples may be defined as the logical perception order according
to how samples were spiked. However, in the case of uni-dimensional spiking and in other
more complex situations, the expected ranking should be calculated or confirmed by

examining the data from all panels in a ring trial, if this has not been previously undertaken.
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Calculating the expected ranking from, say, 10 panels is simply achieved by working out the
overall mean rank for each sample, based on the data from all assessors in the 10 sensory
panels. It is desirable that the expected rank is based on data from sensory panels known to

have good ability with both the method and product category.

However, it is possible for a panel to achieve the expected rank order, yet only find one
sample different from one other sample. Such a panel would not perform well in its ability to
discriminate between samples that are known to be different. Further, a panel order may
switch the ranking of 2 samples simply because there is no perceptible difference between
them. In this case, deviance from the expected rank order does not necessarily indicate poor
performance. This problem can be minimised by working on mean panel ranks, rather than

ranking the panel rank sums for each sample.

Thus, it is important to evaluate a panel’s performance, not only on its ability to produce the
expected ranking, but also on its ability to discriminate between the samples in terms of the
appropriate statistical test showing a specified level of significance. Moreover, the panel
would be expected to find specified pairs of samples different, at a given level of statistical

significance.

Finally, a good panel is one whose assessors agree well on the expected rank order, and
therefore some measure of panel agreement may enhance overall evaluation of panel

performance.

4.3 Establishing the Expected Discrimination Between Samples

In order to determine the expected level of discrimination between samples, some advanced
data are required to enable expected differences to be defined. This can be achieved in two
ways. Firstly, the panel ranks from all panels in a ring trial can be used. These panels ranks
would be submitted to the Friedman and Conover tests, and through examination of the data,

expected levels of performance set. However, this method suffers from being data dependent.
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Ideally, the expected results should be set in advance of the ring trial. This approach was

adopted later in the project where a number of pre-tests were undertaken using trained and

untrained assessors (McEwan, 2001). The trained assessors of known ability are used to

establish what a ‘good’ panel could achieve, whilst the untrained assessors reflect a ‘poorer

performance.

4.4 Stages in Establishing Panel Performance

STEP 1

Establish how well the rank
means agree with the expected
rank means, for each panel.

STEP 2

Establish whether each panel
finds significant differences
between the samples.

STEP 3

Calculate what pairs of samples
are different for each panel.

2

STEP 4

Calculate how well
assessors in each panel
agree with each other with
respect to rank order.

STEP 5

achieved.

Establish the level of
performance each panel has

S/REP/40315/1
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5. CORRELATION METHODS FOR PERFORMANCE

5.1 Principle

One of the simplest ways to measure whether the ranking provided by an assessor or a panel
corresponds to the expected result is to calculate the rank correlation. The correlation
measures the strength of the relationship between the observed ranking and the expected
(‘true’) result. If the correlation is one, then the assessor or panel has performed perfectly. A
correlation of zero would imply no relationship, whilst a negative correlation would suggest
either the ranking was done in reverse (the panel totally misunderstood the test instructions),
the panel did not perform well, or that there were no perceivable differences between the

samples. The latter should not be the case for proficiency testing scheme samples.

5.2 Procedure

The first step is to produce a table of the rank data, together with the expected or true ranking.

Table 5.1:  The ranking results provided as a panel result, together with the
‘expected’ ranking and deviation (d) from this.

Expected Panel | Difference
Sample Rank Rank d d
1 5 5.0 0 0
2 1 1.4 0.4 0.16
3 3 2.5 0.5 0.25
4 2 2.4 1.4 1.96
5 4 3.8 0.2 0.04
Sum =2.41
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The Spearman’s rank correlation (p) can then calculated between the true rank order and the

panel ranking using the information in Table 4.1 and the formula below.

p=1- 6x(d%) d = difference between true rank and panel rank
n’-n
n = number of samples ranked
=1- 6*241
216 -6
0.931

However, as the panel mean ranks were used, it is more useful to use the Pearson’s
correlation, particularly as the ‘expected rank’ in the ring trials may not be whole numbers, as
it will be based on the results of several panels. The Pearson correlation (r) is worked out by

most statistical software, and so the formula is not reported here (see O’Mahoney, 1986).

For the data in Table 5.1, a correlation coefficient of 0.973 was calculated. Statistical tables
will reveal that a correlation of 0.685 is required to achieve a 10% level of significance, 0.803
is required to achieve a 5% level of significance, and a correlation of 0.933 for a 1%
significance. This test is one-sided, as the interest is in securing a correlation as high as

possible.
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6. COEFFICIENT OF CONCORDANCE

6.1 Principle

The procedure reported in Chapter 5 essentially dealt with the case of two rankings, and the
strength of the relationship between them. However, the problem of a sensory panel is that
there are several assessors each providing a ranking, and that the reliability of the panel rank
is, in part, dependent on the performance of the panel. Therefore, the concordance between
the ranks provided by each assessor in the panel is of interest. However, a panel can show a

high concordance, yet not perform well in relation to the ‘expected’ ranking.

It should be noted that the coefficient of concordance (W) is essentially the same test as the
Friedman test, but looks at the data from a different angle. In other words, Steps 2 and 4 of
Section 4.4, take a different perspective of the data, but are based on the same underlying

statistical test.

6.2 Procedure

Kendall and Gibbons (1990) proposed a solution to this problem of calculating the agreement
between more than two rankings, by proposing the Coefficient of Concordance (W). W is
based partly on the deviations between the rankings as shown in Table 5.1. However, in this
case it is necessary to calculate the deviations from all assessors. The coefficient of

concordance (W) is then written as follows:

S = sum of the squared deviations between sample
W= 1228 rank totals around their mean
m’(n’— n) n = number of samples ranked
m = number of assessors
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The value W ranges from 0 to 1, where 0 would imply no agreement among the rankings (by
assessors) and 1 would imply perfect agreement (concordance). In other words, as W
increases from 0 to 1 the deviations become larger, and by implication a greater agreement

between the rankings.

Appendix 4 provides some critical values of W, which are based on similar calculations to the

Friedman test.
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7. FRIEDMAN RESULTS AND TRUE RANK CALCULATIONS

7.1 Apple Juice

Sample Information

Five samples of apple juice were made using a blend of glucose and fructose, where each
mixture comprised 50 ml of apple juice, S0 ml of water and 6.5 g of the sugar blend. The
sugar blends are shown in Table 7.1. In this case, the ‘logical’ rank was not known in

advance.

Table 7.1:  Sugar blends and 3-digit numbers used to code the products for 2 replicate

assessments.
Sugar Blend Code Code
Sample | Glucose | Fructose Rep 1 Rep 2
1 100% - 966 166
2 - 100% 551 352
3 25% 75% 962 173
4 50% 50% 439 826
5 75% 25% 985 387

Calculation of Expected Rank and Sample Discrimination

For evaluation, assessors in each sensory panel were asked to rank the samples from least to
most sweet, or vice-versa. However, all laboratories were asked to ensure that the data sent to

the data co-ordinator were coded from ‘5’ for ‘least sweet’ to ‘1’ for ‘most sweet’.

Table 7.2 shows the mean rank across all panels and assessors in the apple juice evaluation.

There is a clear expected rank order as both replicates provide the same result.
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Table 7.2:  Average rank for the apple juice samples, calculated to one decimal place.

Rep 1 Mean 1 Rep 2 Mean 2 Expected
966 4.9 166 4.9 4.9 (5) Least sweet
985 3.8 387 3.9 3.8(4)
439 2.9 826 2.9 2903)
962 2.0 173 2.0 2.0(2)
551 1.3 352 1.3 1.3 (1) Most sweet

Table 7.3 shows the average rank for each panel. In order to determine which samples are

significantly different a Friedman test was undertaken.

Table 7.3:  Average rank for the apple juice samples, calculated to one decimal place,
over both replicates for each panel.

True Panel
Sample | Value | A B C D E F G H K L M
966/166 49 | 4.8 50 | 49 | 49 5.0 50 | 49 50 | 47 | 48
985/387 4 39 | 338 36 | 40 | 4.0 | 4.1 38 | 3.8 39 | 4.0 3.7
439/826 3 29 | 3.0 3.1 2.7 | 3.1 28 | 28 | 29 | 28 | 28 3.0
962/173 2 1.9 1.9 19 | 21 20 | 22 | 23 2.1 19 { 2.0 | 2.0
551/352 1 1.5 1.5 13 1.3 1.2 1.0 1.1 1.2 14 14 1.5

The Friedman statistics was 44, with p <0.00001. Table 7.4 shows the rank sums from the
Friedman analysis, and the differences identified between samples based on the Conover

multiple comparison test.

These results suggest that panels should be able to at least discriminate between all samples.
Thus, this ranking was very easy! In addition, the coefficient of concordance for these panel

mean ranks was 0.82, suggesting good agreement between the eleven panels.

S/REP/40315/1 Page 20 of 73 JAM/REPORTS/R40315-1.DOC



Table 7.4:  Panel analysis rank means, together with the significant differences based
on Conover comparison values of 0.14 and 0.24 at the 5% and 1% level.

Differences
Sample Rank Sum Mean Rank 5% 1%
966/166 53.9 4.9 a a
985/387 42.5 3.9 b b
439/826 31.9 2.9 c c
962/173 223 2.0 d d
551/352 14.4 1.3 e e

Summary of Friedman Results and Multiple Comparisons

Tables 7.5 and 7.6 show the rank means, and multiple comparison value (MC at 5%
significance) for each panel, for the 2 replicate assessments. If the difference between two
rank means are greater than the multiple comparison value, then the samples were

significantly different at the 5% level of significance.

Table 7.5:  Rank means, Friedman rank test results (p-value) and multiple
comparison (MC) value to compare samples: apple juice, replicate 1.

True Panel
Sample | Value A B C D E F G H K L M
966 5 4.8 4.8 5.0 4.9 5.0 5.0 5.0 5.0 5.0 45 4.7
985 4 42 3.6 3.8 39 | 39 4.0 | 3.7 3.8 3.8 4.0 3.8
439 3 2.7 3.1 3.1 2.7 | 3.1 2.7 2.9 3.0 3.0 3.1 2.9
962 2 22 1.8 1.9 22 | 20 23 22 2.1 1.8 1.7 23
551 1 1.1 1.8 1.3 13 1.0 1.0 1.2 1.1 1.4 1.7 1.3
MC-5% -- 0.5 0.7 0.6 0.6 0.2 0.3 0.6 0.6 0.5 0.7 0.8
p-value -- 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
n 10 17 8 12 10 10 11 8 12 13 12
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Table 7.6:  Rank means, Friedman rank test results (p-value) and multiple
comparison (MC) value to compare samples: apple juice, replicate 2.
True Panel
Sample | Value | A B C D E F G H K L M
166 5 5.0 4.9 5.0 4.9 4.7 4.9 5.0 4.9 4.9 4.8 4.8
387 4 3.6 4.1 3.5 4.1 4 4.1 3.8 3.8 4.1 4.1 3.5
826 3 3.0 2.9 3.1 2.7 3 2.8 2.7 29 2.7 2.5 33
173 2 1.6 1.9 2.0 2.1 2 2.2 2.4 2.1 2.0 24 1.7
352 1 1.8 1.2 1.4 1.3 1.3 1 1.1 1.4 1.3 1.2 1.8
MC-5% -- 0.7 0.4 0.8 0.5 1071 ] 034 | 05 0.9 0.5 0.5 0.7
p-value -- 0.000 | 0.000 | 0.000 | 0.000 | 0.000 { 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
n 10 17 8 12 10 10 11 8 12 13 12

7.2 Tomato Soup

Sample Information

Five samples of tomato soup were made using different levels of starch. Thus, the logical

rank order was known in advance (Table 7.7).

Table 7.7:

Soup samples and 3-digit numbers used to code the products for 2
replicate assessments.

Tomato Soup Cornflour Product Code | Product Code | Logical
Formulation Supplement Repl Rep 2 Rank
TS1 Nil 681 254 5
TS2 753 310 4
TS3 272 679 3
TS4 449 239 2
TS5 Most 308 792 1
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Calculation of Expected Rank and Sample Discrimination

For evaluation, assessors in each sensory panel were asked to rank the samples from least to
most thick, or vice-versa. However, all laboratories were asked to ensure that the data sent to

the data co-ordinator were coded from 5’ for ‘least thick’ to ‘1’ for ‘most thick’.

Table 7.8 shows the mean rank across all panels and assessors in the tomato evaluation.
There is a clear ‘true’ rank order as both replicates provide the same result. Table 7.9 shows
the average rank for each panel, and in order to determine which samples are significantly
different, the data were converted to ranks, and a Friedman test undertaken. The Friedman
statistics was 33.7, with p <0.00001. Table 7.10 shows the rank means from the Friedman
analysis, and the differences identified between samples based on the Conover multiple

comparison test.

Table 7.8:  Average rank for the tomato soup samples, calculated to one decimal

place.
Rep 1 Mean 1 Rep 2 Mean 2 Expected
681 4.5 254 4.7 4.6 (5) Least thick
753 4.2 310 3.9 4.1 (4)
272 3.0 679 3.2 3.1(3)
449 1.9 239 1.9 1.9 (2)
308 1.5 792 1.4 1.5(1) Most thick
Table 7.9:  Average rank for the tomato soup samples, calculated to one decimal

place, over both replicates for each panel.

True Panel

Sample | Value | A B C D E F G H K L M

681/254 5 4.1 4.6 49 | 5.0 | 46 | 44 | 45 3.7 | 49 | 3.6 | 4.7

753/310 43 4.3 3.8 | 3.6 | 43 44 | 43 28 | 40 | 39 | 4.0

4
272/679 3 3.5 3.0 3.1 33 2.9 33 2.6 2.4 3.1 4.0 3.1
449/239 2 2.1 2.1 2.3 1.7 2.1 1.7 1.6 2.8 1.6 2.6 2.0

308/792 1 1.1 1.0 1.0 1.4 1.2 1.3 2.0 34 1.4 1.2 1.3
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Table 7.10:  Panel analysis rank means, together with the significant differences based
on Conover comparison values of 0.48 and 0.85 at the 5% and 1% level.

Differences

Sample Rank Sum Mean Rank 5% 1%

681/254 49.0 4.5 a a

753/310 43.2 3.9 b ab

272/679 343 3.2 c b

449/239 22.6 2.1 d c

308/792 16.3 1.5 e c

From Table 7.10, it could be concluded that a very good panel should be able to discriminate

all samples from each other. A good panel should discriminate the samples shown under 1%,

but may not find differences between Samples 681/254 and 753/310 at the 5% level or
differences between Samples 449/239 and 308/792.

The coefficient of concordance was 0.63, and therefore there was not such a good agreement

between the panels for tomato soup.

Summary of Friedman Results and Multiple Comparisons

Tables 7.11 and 7.12 show the rank sums, and multiple comparison value (MC at 5%) for

each panel, for the 2 replicate assessments. If the difference between two rank means are

greater than the multiple comparison value, then the samples were significantly different at

the 5% level of significance.
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Table 7.11: Rank means, Friedman rank test results (p-value) and multiple
comparison (MC) value to compare samples: tomato soup, replicate 1.
True Panel
Sample | Value A B C D E F G H K L M
681 5 4.1 4.2 4.8 5.0 4.2 3.8 4.5 4.5 4.9 3.7 4.9
753 4 43 4.8 35 3.8 4.7 5.0 4.2 2.7 4.1 3.1 3.6
272 3 34 29 3.6 3.1 2.6 3.2 2.2 2.0 3.0 29 34
449 2 2.1 2.1 2.1 2.1 2.5 1.3 1.4 3.2 1.3 29 1.8
308 1 1.1 1.0 1.0 1.0 1.0 1.7 2.8 2.7 1.7 2.4 13
MC-5% -- 0.8 0.3 0.7 03 0.5 0.4 0.8 1.7 0.3 0.8 0.5
p-value - 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.078 | 0.000 | 0.000 | 0.000
N 10 17 8 12 10 10 11 6 11 12 11
Table 7.12: Rank means, Friedman rank test results (p-value) and multiple
comparison (MC) value to compare samples: tomato soup, replicate 2.
True Panel
Sample | Value A B C D E F G H K L M
254 5 4.1 4.9 5.0 5.0 4.9 4.5 4.5 2.8 4.9 2.9 4.5
310 4 4.2 3.8 4.0 33 3.9 4.4 4.4 2.8 3.8 33 43
679 3 3.5 3.2 2.6 3.6 3.2 3.1 3.1 2.8 33 31 2.8
239 2 2.0 2.1 24 1.3 1.7 1.8 1.8 23 2.0 3.2 2.1
792 1 1.2 1.0 1.0 1.8 1.3 1.2 1.2 42 1.0 2.5 1.3
MC-5% -- 0.8 03 0.4 0.5 0.5 03 0.5 1.9 0.4 0.8 0.7
p-value 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.339 | 0.000 | 0.000 | 0.000
n 10 17 8 12 10 11 11 6 11 12 11
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8. SELECTED WORKED EXAMPLES: PANEL PERFORMANCE

8.1 Correlation Method

Table 8.1 shows the mean rank results for Panel L, together with the expected rank mean.

The correlation coefficients between the expected rank and panel ranks were 0.884 and 0.417,

respectively.
Table 8.1:  Overall rank for tomato soup samples, as calculated from Panel L.
Expected Panel

Sample Rank Rep 1 Rep 2

681/254 4.6 3.7 29

753/310 4.1 3.1 33

272/679 3.1 2.9 3.1

449/239 1.9 2.9 32

308/792 1.5 24 2.5

For replicate 1, the correlation of 0.884 is significant at the 1% level, and therefore the panel
rank mean was in good agreement with the expected rank. However, a non-significant result

was recorded for replicate 2, and so the panel did not perform well.

8.2 Coefficient of Concordance — Panel Concordance

Table 8.2 shows the raw data from Panel A, which is used to calculate the coefficient of

concordance. The first step is to produce Table 8.3.
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Table 8.2:  The first replicate ranking results for the 10 assessors in Panel A, together
with the ‘expected’ ranking.

True Assessors

Sample | Value 1 2 3 4 6 7 8 9 10
681/254 5 3 1 5 4 5 4 5 5 4
753/310 4 5 4 4 5 3 4 5 4 4 5
272/679 3 4 5 3 3 4 3 3 3 3 3
449/239 2 2 3 2 2 2 2 2 2 2 2
308/792 1 1 2 1 1 1 1 1 1 1 1
Table 8.3:  Calculation of squared deviations — Panel A, Replicate 1.

Squared

Sample Row Sum Mean Deviation Deviation (S)

681/254 41 30 11 121

753/310 43 30 13 169

2721679 34 30 4 16

449/239 21 30 9 81

308/792 11 30 19 361

748

The row sum is obtained by summing the values across assessors for each sample separately.

The mean is calculated as the total of all ranks divided by the number of samples. In other

words: [(5+4+3+2+1)*ass]/5 = (15*10)/5 = 30.

The deviation is the difference between the row sum and the mean.

The calculation of W can now take place, by substituting the appropriate values into the

formula.
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W = 12%S S = sum of the squared deviations between sample
m?*(n’ —n) rank totals around their mean
W = 12 x 748 n = number of samples ranked
10°x (5’ -5) m = number of assessors
W = 8976
12000
W = 0.748

As the concordance (W) is 0.748, this illustrates that the members of the panel were not in
total agreement with each other. Ideally, a good panel should have a coefficient of
concordance of greater than 0.8, whilst a very good panel could achieve a value of greater
than 0.9. However, the levels need to be set according to the difficulty of the task (see

Chapter 10), and based on statistical criteria.

8.3 Concordance of Panel with the Expected Value

It is also possible to undertake the same calculation for the concordance between the true
ranking and the panel ranking. The data for Panel A are provided in Table 8.4, whilst Table

8.5 provides the values that will be substituted into the formula for W.

The value of W =0.950 is near 1.0, and therefore it can be concluded that Panel A is in good

agreement with the ‘true’ ranking for both assessments.
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Table 8.4 Average ranking for Panel A together with the ‘expected’ ranking’.

Expected
Sample Rank Replicate 1 | Replicate 2
681/254 4.6 4.1 4.1
753/310 4.1 4.3 4.2
272/679 3.1 3.4 3.5
449/239 1.9 2.1 2.0
308/792 1.5 1.1 1.2
Table 8.5:  Calculation of squared deviations for two replicate ranking assessments

from Panel A.

Replicate 1 Replicate 2
Sample Mean Sum | Deviation S Sum | Deviation S

1 6 8.7 2.7 7.29 8.7 2.7 7.29
2 6 8.4 2.4 5.76 8.3 2.3 5.29
3 6 6.5 0.5 0.25 6.6 0.6 0.36
4 6 4.0 2.0 4.00 3.9 2.1 4.41
5 6 2.6 3.4 11.56 2.7 33 10.89

28.86 28.24

The mean is calculated as the total of all ranks divided by the number of samples. In other

words: [(5+4+3+2+1)*2])/5 = 30/5 = 6.

The next page demonstrates the calculation of W for both replicates, resulting in values of
0.722 and 0.706, respectively. This result implied that the panel performed reasonably well,

but there is room for improvement.
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W = 12%8 S = sum of the squared deviations between sample
m?(n’— n) rank totals around their mean
W = 12 x 28.86 n = number of samples ranked
2’x (5°-5) m = number of assessors
W = 346.32
480
W = 0.722
W = 12%S S = sum of the squared deviations between sample
m*(n’ —n) rank totals around their mean
W = 12 x28.24 n = number of samples ranked
2’x (5°-5) m = number of assessors
W = 338.88
480
W = 0.706
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9. SUMMARY OF PERFORMANCE

9.1 Apple Juice — Correlation Method

Tables 9.1 and 9.2 show the panel rank for the 11 panels, and for both replicates. These data

are correlated with the true rank to give the results shown in Table 9.3.

Table 9.1:  The panel mean ranks for Replicate 1 of the apple juice ranking.
Expected Panel
Sample | Rank A B C D E F G H K L M
966 4.9 4.8 4.8 5.0 4.9 5.0 5.0 5.0 5.0 5.0 4.5 4.7
985 3.9 4.2 3.6 3.8 3.9 3.9 4.0 3.7 3.8 3.8 4.0 3.8
439 2.9 2.7 3.1 3.1 2.7 3.1 2.7 2.9 3.0 3.0 3.1 2.9
962 2.0 2.2 1.8 1.9 2.2 2.0 23 2.2 2.1 1.8 1.7 2.3
551 1.3 1.1 1.8 1.3 1.3 1.0 1.0 1.2 1.1 1.4 1.7 1.3
Table 9.2:  The panel mean ranks for Replicate 2 of the apple juice ranking.
Expected Panel
Sample | Rank A B C D E F G H K L M
166 4.9 5.0 4.9 5.0 4.9 4.7 4.9 5.0 4.9 4.9 4.8 4.8
387 39 3.6 4.1 3.5 4.1 4 4.1 3.8 3.8 4.1 4.1 3.5
826 29 3.0 29 3.1 2.7 3 2.8 2.7 2.9 2.7 25 33
173 2.0 1.6 1.9 2.0 2.1 2 22 24 2.1 2.0 24 1.7
352 1.3 1.8 1.2 1.4 1.3 1.3 1 1.1 1.4 1.3 1.2 1.8

Clearly, Table 9.3 reveals that all panels have performed well, in that the panel rank

corresponds to the true rank on most occasions.
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Table 9.3:  Correlations between each panel and the ‘true’ rank order for apple juice.
Panel Replicate Correlation Significance
A 1 0.988 1%
2 0.968 1%
B 1 0.979 1%
2 0.998 1%
C 1 0.996 1%
2 0.987 1%
D 1 0.995 1%
2 0.995 1%
E 1 0.996 1%
2 0.997 1%
F 1 0.989 1%
2 0.992 1%
G 1 0.994 1%
2 0.985 1%
H 1 0.996 1%
2 0.999 1%
K | 0.995 1%
2 0.996 1%
L 1 0.975 1%
2 0.977 1%
M 1 0.995 1%
2 0.961 1%
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9.2 Tomato Soup — Correlation Method

Tables 9.4 and 9.5 show the panel rank means for the 11 panels, and for both replicates.

These data are correlated with the true rank to give the results shown in Table 9.6.

Table 9.4:  The panel rank means for Replicate 1 of the tomato soup ranking.
Expected Panel
Sample | Rank A B C D E F G H K L M
681 4.5 4.1 4.2 4.8 5.0 4.2 3.8 4.5 4.5 4.9 3.7 4.9
753 3.9 43 4.8 3.5 3.8 4.7 5.0 4.2 2.7 4.1 3.1 3.6
272 3.2 34 2.9 3.6 3.1 2.6 32 2.2 2.0 3.0 2.9 34
449 2.1 2.1 2.1 2.1 2.1 2.5 1.3 1.4 3.2 1.3 2.9 1.8
308 1.5 1.1 1.0 1.0 1.0 1.0 1.7 2.8 2.7 1.7 24 1.3
Table 9.5:  The panel rank means for Replicate 2 of the tomato soup ranking.
True Panel
Sample | Value A B C D E F G H K L M
254 4.5 4.1 4.9 5.0 5.0 4.9 4.5 4.5 2.8 4.9 29 4.5
310 3.9 4.2 3.8 4.0 33 3.9 4.4 4.4 2.8 3.8 33 4.3
679 3.2 3.5 3.2 2.6 3.6 3.2 3.1 3.1 2.8 33 3.1 2.8
239 2.1 2.0 2.1 24 1.3 1.7 1.8 1.8 23 2.0 3.2 2.1
792 1.5 1.2 1.0 1.0 1.8 1.3 1.2 1.2 4.2 1.0 2.5 1.3

For the tomato soup data, Panel M correlated best with the expected rank on both replicates.

The performance of Panel H was very poor. The results of Panel L were poor on the second

replicate.

One point worth noting, is that these results should also be taken in conjunction with

performance of expected sample discrimination. This is because deviations from perfection

may be due to random results where no difference existed between two samples.
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Table 9.6:  Correlations between each panel and the ‘true/expected’ rank order for
tomato soup.

Panel Replicate Correlation Significance
A 1 0.967 1%
2 0.970 1%
B 1 0.943 1%
2 0.992 1%
C 1 0.970 1%
2 0.962 1%
D 1 0.990 1%
2 0.914 5%
E 1 0914 5%
2 0.995 1%
F 1 0.864 5%
2 0.988 1%
G 1 0.751 10%
2 0.988 1%
H 1 0.443 ns
2 -0.475 ns
K 1 0.963 1%
2 0.993 1%
L 1 0.907 5%
2 0.453 ns
M 1 0.984 1%
2 0.981 1%
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9.3 Apple Juice — Coefficient of Concordance

The same tables of panel ranks correlations (Tables 9.1 and 9.2) were used to calculate the

Pearson, and the coefficient of concordance for each panel (Table 9.7).

Table 9.7 shows the concordance between assessors in each panel, and it can be seen that only
Panel F performed well over both replicates. The assessors in Panel M were not in good

agreement, though this was not poor enough to affect the overall panel ranking (Table 9.8).

Table 9.7:  Coefficient of concordance for the panel — apple juice.
Panel Replicate 1 Replicate 2
A 0.902 0.776
B 0.653 0.891
C 0.891 0.791
D 0.810 0.886
E 0.982 0.778
F 0.958 0.950
G 0.851 0.879
H 0.884 0.750
K 0.843 0.874
L 0.892 0.857
M 0.699 0.701

The agreement between the panel rank and the expected rank was not calculated as this only

reflects the information from the correlation coefficients, calculated previously.
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9.4 Tomato Soup — Coefficient of Concordance

The same tables of panel ranks (Tables 9.3 and 9.4) were used to calculate the Pearson

correlations, and the coefficient of concordance for each panel (Tables 9.8).

The agreement between assessors in a panel (Table 9.8) is generally poorer for tomato soup,

than for the apple juice. The results for Panel H demonstrate that the assessors did not agree

with each other, and this was a very poor and unacceptable result. However, on the positive

side, the assessors in Panels B, F and K showed good agreement for both replicate

assessments.
Table 9.8:  Coefficient of concordance for the panel — tomato soup.
Panel Replicate 1 Replicate 2

A 0.748 0.714

B 0.943 0.936

C 0.847 0.953

D 0.954 0.879

E 0.874 0.904

F 0.926 0.958

G 0.689 0.896

H 0.378 0.189

K 0.944 0.939

L 0.656 0.688

M 0.856 0.785
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10. PROCEDURE FOR PERFORMANCE CRITERIA

10.1 Introduction

This chapter outlines a first attempt at establishing a scheme to evaluate the performance of
panels in a proficiency testing scheme of the sensory ranking test. In proposing this scheme,
it should be highlighted that the actual measurement criteria are at this stage illustrative, as
these will be set by the Proficiency Testing Provider based on the results of screening work

undertaken prior to a ring trial.

10.2 Establishing the Expected Result

The suggested stepwise procedure for establishing the expected result is demonstrated below

through 5 key stages (see overleaf).

Step 1 — Calculate the Rank Means and Rank Order

For each panel in the pre-test, tabulate the rank data and work out the panel rank mean for
each sample. If all pre-test panels agreed in their rank means, then the average over all pre-
test panels can be set as the ‘expected rank means’. If there is some disagreement, then steps
2 and 3 will help to establish if this is because samples were ‘switched’ in the ranking by
assessors because there was no perceptible difference between them. Determine the Pearson
correlation coefficient between the ‘expected rank means’ and the actual panel rank means at
the 10% level of significance. This level of significance is chosen to eliminate the possibility

of downgrading a panel because two or more samples were not perceptibly different.

Possible performance criteria: 0 if p> 0.10 or correlation is negative; 1ifp <0.10.

S/REP/40315/1 Page 37 of 73 JAM/REPORTS/R40315-1.DOC



STEP 1

Calculate the rank means and

rank order.

STEP 2 STEP 4

Calculate the significance level | » | Calculate how well

associated with testing for assessors agree with each

sample differences. other with respect to rank
order.

STEP 3

Calculate what pairs of samples
are different.

STEP 5

Establish the performance
criteria for the ring trial.

Step 2 — Calculate the significance level associated with testing for sample differences

To establish how well each panel of assessors discriminated between the samples, a Friedman
rank test should be undertaken and the level of significance recorded. If all panels performed
well (i.e. p £ 0.01 (1%)), then the results from an untrained panel may be required to help
establish whether the pre-test was too easy (which would be the case if the task could be
performed easily and accurately by an untrained panel), or whether the pre-test panels were
just very good. If all pre-test panels perform poorly (i.e. p > 0.10 (10%)), then the nature of

the samples may have made the ranking test too difficult (for example, the method of
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preparation and serving may lead to sample inconsistencies). The Co-ordinator should be
confident that the decisions based on the pre-test results will allow some panels in the main
test to perform better than the expected result and still detect panels who perform worse than

the expected result (see example), before deciding the ‘expected significance level’

Possible performance criteria: 0ifp>0.10 (10%)
1ifp<0.10 (10%)
2ifp<0.05 (5%)
3ifp<0.01 (1%)
4ifp<0.001  (0.1%)

Step 3 — Calculate which pairs of samples are different

Having established an expected significance level, the next step is to determine which pairs of
samples are different at a specified level of significance (for example 1%, 5% and 10%
significance). This can be achieved through the use of a suitable multiple comparison test, for
example Conover’s method. From these results the ‘expected sample differences’ can be set.

At this point, the provider can confirm that the selected ‘expected rank means’ is satisfactory.

Possible performance criteria: 0 if no significant differences at 5% level
1 if 1 pair significantly different at 5% level
2 if 2 pairs significantly different at 5% level
3 if 3 pairs significantly different at 5% level
4 if 4 pairs significantly different at 5% level
5 if 1 pair significantly different at 1% level
6 if 2 or more pairs significantly different at 1% level

Step 4 — Calculate how well assessors agree with each other with respect to rank order

The Coefficient of Concordance is used to measure the agreement between assessors in a
panel. Generally, a lack of agreement between assessors is reflected by a poor result in Steps
2 and 3. However, this method provides a single measure of how well the panel agrees to

produce a given level of performance. The ‘expected concordance level’ is then set.
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Possible performance criteria: 0 if W <0.70
1ifW=>0.70
2ifW=>0.80
3ifW=>0.90
4ifW>0.95

Step 5 — Setting the Performance Criteria

Finally, the information gathered in Steps 1-4 should be collated, and rules amended to define
the level of performance linked to different categories of performance. For example: very
good, good, average, poor, very poor. By allocating a score to each of these categories for

steps 1 to 4, an overall performance criteria can be specified.

For example:  score =13-15  very good
score=10-12  good

score = 7-9 average
score = 4-6 poor (unacceptable)
score < 3 very poor (unacceptable)

Comments on Scheme

In general, if the pre-test results are ‘good’ or better, the pre-test laboratories can discriminate
between the samples, can rank the samples in the right order, can detect differences between
the specified samples and the assessors within the panel agree with each other. In this case,
the Co-ordinator should go ahead with the main trial. If the pre-test results are ‘poor’ or
worse, the selection of samples should be rethought and a repeat pre-test organised with new
samples. If the results are ‘average’ the data should be carefully considered again to be
confident that the panels in the main inter-comparison will be able to discriminate between the

samples, before recommending that the main trial goes ahead.

Having set the performance criteria, and having made the decision to carry on with the main

trial, one level of performance should be designated as the 'expected result'. In practice, this
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will usually be the 'good' or 'average' category (the decision should be based on knowledge of
the samples and of the panels participating in the pre-test, as well as on the statistical analyses
of the pre-test data). It is important that the expected result is achievable. For example, if the
expected result is set too high (e.g. 'very good'), then it is likely that few panels may be as
good as 'expected’ in the main inter-comparison. For this reason, in coming to the decision
on the 'expected result', it is also important to consider what might reasonably be 'expected' of
a trained sensory panel in which one would normally have confidence in its ability to perform

sensory ranking tests.

10.3 Determining the Actual Panel Performance

The stepwise procedure for establishing the actual performance of participants for ranking
tests in relation to the ‘expected result’ determined from the pre-test is according to the

following scheme (see overleaf).

Step 1 — Establish how well a panel’s rank means agree with the expected rank means

For each participant in the main test, tabulate the data for each panel and calculate the panel
rank for each panel. Calculate the Pearson correlation coefficient between the ‘expected rank

means’ (from the pre-test) and the actual rank means, to establish how well they agree.

Possible performance criteria:

‘Score’ 0 if the correlation is negative
‘Score’ 0 if the significance level (p-value) associated with the correlation > 0.10
‘Score’ 1 if the significance level (p-value) associated with the correlation < 0.10
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STEP 1

Establish how well the rank
means agree with the expected
rank means, for each panel.

l

STEP 2

Establish whether each panel
finds significant differences
between the samples.

p | Calculate how well

STEP 4

assessors in each panel
agree with each other with

respect to rank order.

l

Calculate what pairs of samples
are different for each panel.

STEP 3

STEP §

Establish the level of
performance each panel has
achieved.

Step 2 - Establish whether each panel finds significant differences between the samples

To establish how well each panel of assessors discriminated between the samples, perform the
Friedman test on the data for each panel, note the level of significance achieved for sample

discrimination, and record the performance score achieved.

Possible performance criteria:  ‘Score’ 0if p>0.10 (10%)
‘Score’ 1if p<0.10 (10%)
‘Score’ 2ifp<0.05 (5%)
‘Score’ 3if p<0.01 (1%)
‘Score’ 4 if p<0.001 (0.1%)

JAM/REPORTS/R40315-1.DOC
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Step 3 - Calculate what pairs of samples are different for each panel

Perform the multiple comparison test, for example Conover’s method, using the multiple
comparison value determined at the specified levels of significance in the pre-test, note which

samples are different at each level for each panel, and record the performance score.

Possible performance criteria:
‘Score’ 0 if no significant differences at 5% level
‘Score’ 1 if 1 pair significantly different at 5% level
‘Score’ 2 if 2 pairs significantly different at 5% level
‘Score’ 3 if 3 pairs significantly different at 5% level
‘Score’ 4 if 4 pairs significantly different at 5% level
‘Score’ 5 if 1 pair significantly different at 1% level
‘Score’ 6 if 2 or more pairs significantly different at 1% level

It should be noted that the actual pairs should be specified for the actual proficiency scheme.

Step 4 - Calculate how well assessors in each panel agree with each other

Calculate the Coefficient of Concordance for each panel using the same procedure as used in

the pre-test, and record the performance score.

Possible performance criteria: ‘Score’ 0if W <0.70
‘Score’ 1 if W>0.70
‘Score’ 2 if W > 0.80
‘Score’ 3if W = 0.90
‘Score’ 4 if W > 0.95

Step S - Establish the level of performance each panel has achieved

The data for each panel can now be compared to the ‘expected results’, and a score given to
the performance in each of the 4 evaluation steps. A final overall score is then allocated and

the performance level recorded.
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10.4 Testing the Performance Criteria

The data from these trials did not lend itself to fully testing the proposed performance criteria.
Therefore, it was necessary to undertake further trials to test the proposed performance

scheme. However, considerable progress was made, and this report forms a sound basis from

which to progress.

A further report (McEwan, 2001) will consider in more detail the establishment of expected
results, and examine more closely the most appropriate way to establish the final performance

of panels participating in proficiency tests.
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APPENDIX 1: PANEL RANK SUMS FROM RING TRIALS

Apple Juice

Tables 1 and 2 show the rank sums, and multiple comparison value for each panel, for the 2

replicate assessments. If the difference between two rank sums are different, then the samples

were significantly different at the 5% level of significance.

Table 1: Rank sums, Friedman rank test results (p-value) and multiple comparison
(MC) value to compare samples: apple juice, replicate 1.
True Panel
Sample | Value A B C D E F G H K L M
966 5 48 81 40 59 50 50 55 40 60 59 56
985 4 42 61 30 47 39 | 40 41 30 45 52 46
439 3 27 53 25 32.| 31 27 32 24 36 40 35
962 2 22 30 15 26 20 23 24 17 22 22 28
551 1 11 30 10 16 10 10 13 9 17 22 15
MC-5% -- 47 | 112 | 4.6 7.1 2.0 3.1 6.1 4.7 6.5 9.5 9.0
p-value -- 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Table 2: Rank sums, Friedman rank test results (p-value) and multiple comparison
(MC) value to compare samples: apple juice, replicate 2.
True Panel
Sample | Value A B C D E F G H K L M
166 5 50 83 40 59 47 49 55 39 59 63 58
387 4 36 69 28 49 40 41 42 30 49 53 42
826 3 30 49 25 32 30 28 30 23 32 33 39
173 2 16 33 16 25 20 22 26 17 24 31 20
352 1 18 21 11 15 13 10 12 11 16 15 21
MC-5% -- 7.2 6.3 6.3 5.5 7.1 34 5.5 6.9 5.8 6.4 8.9
p-value -- 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 { 0.000 [ 0.000 | 0.000
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Tomato Soup

Tables 3 and 4 show the rank sums, and multiple comparison value for each panel, for the 2
replicate assessments. If't the difference between two rank sums are different, then the

samples were significantly different at the 5% level of significance.

Table 3: Rank sums, Friedman rank test results (p-value) and multiple comparison
(MC) value to compare samples: tomato soup, replicate 1.

True Panel
Sample | Value A B C D E F G H K L M
681 5 41 72 38 60 42 38 49 27 54 44 54
753 4 43 81 28 46 47 50 46 16 45 37 40
272 3 34 49 29 37 26 32 24 12 33 35 37
449 2 21 36 17 25 25 13 15 19 14 35 20
308 1 11 17 8 12 10 17 31 16 19 29 14
MC-5% -- 7.6 | 4.5 54 1 35 54 | 4.1 88 | 10.1 | 3.7 | 9.6 | 6.0
p-value -- 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.078 | 0.000 | 0.000 | 0.000

Table 4: Rank sums, Friedman rank test results (p-value) and multiple comparison
(MC) value to compare samples: tomato soup, replicate 2.

True Panel
Sample | Value A B C D E F G H K L M
254 5 41 84 40 60 49 50 50 17 54 35 50
310 4 42 65 32 40 39 48 48 17 42 40 47
679 3 35 54 21 43 32 34 34 17 36 37 31
239 2 20 35 19 16 17 20 20 14 22 38 23
792 1 12 17 8 21 13 13 13 25 11 30 14
MC-5% -- 8.1 4.8 30 | 5.7 | 47 | 3.1 51 | 113 | 39 | 9.1 73
p-value 0.000 | 0.000 | 0.000 | 0.000 { 0.000 | 0.000 | 0.000 | 0.339 | 0.000 | 0.000 | 0.000
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APPENDIX 2: MULTIPLE COMPARISON VALUES

The table below provides the Studentised range multiple comparison values to use when

wishing to determine sample differences when ranking 5 samples. All values are appropriate

for the 5% level of significance. These are provided for information, though the Conover

method reported is the one chosen for this project (Section 3.4).

N-Assessor | N-Sample | Normal' |Chi-squared'| Studentised
Range'
3 5 7.6 11.9 10.6
4 5 8.8 13.8 12.2
5 5 9.8 15.4 13.6
6 5 10.7 16.9 14.9
7 5 11.6 18.2 16.1
8 5 12.4 19.5 17.3
9 5 13.1 20.7 18.3
10 5 13.9 21.8 19.3
11 5 14.5 22.8 20.2
12 5 15.2 23.9 21.1
13 5 15.8 24.8 22.0
14 5 16.4 25.8 22.8
15 S 17.0 26.7 23.6
16 5 17.5 27.6 24.4
17 5 18.1 284 25.1
18 5 18.6 29.2 25.9
19 5 19.1 30.0 26.6
20 5 19.6 30.8 273

" Hochberg and Tamhane (1987)

To undertake the comparisons using mean ranks, the numbers in the above table should be

divided by the appropriate number of assessors.
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APPENDIX 3: CRITICAL VALUES FOR THE CORRELATION
COEFFICIENT

Spearman

The table below provides the rank correlation coefficient values required to achieve different

levels of significance relating two rankings with 5 samples. Note that this is based on a one-

sided test.
Significance level Correlation coefficient
1% 0.900
5% 0.800
10% 0.700
15% 0.600
20% 0.500
Pearson

The table below provides the Pearson product moment correlation coefficient values required
to achieve different levels of significance relating two rankings with 5 samples. Note that this

is based on a one-sided test.

Significance level Correlation coefficient
1% 0.9325
5% 0.8031
10% 0.6854
15% 0.5839
20% 0.4926
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APPENDIX 4: CRITICAL VALUES FOR THE COEFFICIENT OF
CONCORDANCE

n = 5 samples

Assessors (m) Significance Level WwW2>?
6 1% 0.489
6 5% 0.372
6 10% 0.317
6 15% 0.278
6 20% 0.250
7 1% 0.433
7 5% 0.327
7 10% 0.273
7 15% 0.237
7 20% 0.216
8 1% 0.384
8 5% 0.288
8 10% 0.241
8 15% 0.209
8 20% 0.188
9 1% 0.341
9 5% 0.254
9 10% 0.210
9 15% 0.185
9 20% 0.165
10 1% 0.310
10 5% 0.230
10 10% 0.190
10 15% 0.166
10 20% 0.150
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Assessors (m) Significance Level WwW=>?
11 1% 0.284
11 5% 0.210
11 10% 0.175
11 15% _ 0.152
11 20% 0.137
12 1% 0.264
12 5% 0.193
12 10% 0.160
12 15% 0.140
12 20% 0.125
13 1% 0.241
13 5% 0.178
13 10% 0.148
13 15% 0.129
13 20% 0.115
14 1% 0.228
14 5% 0.166 .
14 10% 0.138
14 15% 0.119
14 20% 0.107
15 1% 0.213
15 5% 0.156
15 10% 0.130
15 15% 0.111
15 20% 0.100
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Assessors (m) Significance Level WwW=>?
16 1% 0.201
16 5% 0.146
16 10% 0.121
16 15% 0.105
16 20% 0.094
17 1% 0.188
17 5% 0.138
17 10% 0.113
17 15% 0.099
17 20% 0.088
18 1% 0.180
18 5% 0.130
18 10% 0.107
18 15% 0.094
18 20% 0.083
19 1% 0.170
19 5% 0.124
19 10% 0.101
19 15% 0.089
19 20% 0.079
20 1% 0.161
20 5% 0.117
20 10% 0.096
20 15% 0.084
20 20% 0.075
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APPENDIX 5: BACKGROUND TO W CRITICAL VALUES

Friedman’s Statistic and Kendall’s Coefficient of Concordance W

The tests both assume that the data consists of m assessors who rank n samples (without ties
in this exposition). The data can be envisaged as a matrix of m rows (assessors) and n
columns (samples). The entries, r;, are the ranks assigned by the i" assessor to the j™ sample.

The column sums, R;, are used in calculating both these statistics.

m

RA,'=Z}",',' _]=11’1
i=1

Friedman’s statistic is often designated T, and is computed using the corrected sum of square
of ranks S where

n

S=Z(Rj—@j =§R_j—nm2(n+1)2/4

J=1

128
and j=————
mn(n+1)
This statistic is asymptotically distributed as a > with n-1 degrees of freedom. We later
show that this approximation is not sufficiently accurate to be useful in the particular
circumstances of the PROFISENS project.

For estimating statistical significance from critical values, a transformation of T, (i.e. T,) is to
be preferred. T, is defined as:

(m—l)T1 m(n—l)TZ
T,=——"—"——— and conversel T=—""""T"T""—
2 -1 -T, YT =1+ T,

It is later shown that this is a more acceptable approximation.

Kendall’s Coefficient of Concordance (W) was developed independently of Friedman’s
statistic with a different purpose in mind. It is defined as:

128 128

W -n) mia(n+1)(n-1)
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It is bounded by 0 and 1 for all values of m and n and thus offers the advantage of allowing
comparisons between panels with different numbers of assessors. W can be expressed in term
of T, by:

— Tl
mn-1)

and in terms of T,

I
Cm-1+T,

Thus, the Friedman’s statistic and Kendall’s Coefficient of Concordance yield the same level
of significance when applied to the same data. As noted above there can be advantages in
computing W in order to allow comparison of panels with different numbers of assessors.

A set of tables (Tables 1-8) has been produced to allow the study of critical values for 5
samples (n) and 2-20 assessors (m) so that well founded recommendations can be made.

Tables 1 — 3 contain the results of a simulation study (1,000,000 simulations) for 2 —20
assessors (m). The results are expressed for Friedman’s statistic (T,) Table 1, Coefficient of
Concordance (W) — Table 2 and for the corrected sum of squared rank sums (S) — Table 3.
Tables 1-3 contain the same information but expressed in terms of different statistics.

Table 4 contains the critical values using the ¥’ approximation T,, the traditional Friedman’s
statistic. Note that this approximation is independent of the value of assessors (m) and
depends only on the number of samples (n). Table 5 contains the critical values using the F
approximation to T, but the critical values are expressed in terms of T, the traditional
Friedman’s statistic. The results are in good (but not excellent) agreement with those of Table
1. Tables 6-8 give published values of Friedman (T,), Kendall (W) and the corrected sum of
squares of rank totals (S) from the literature. It is notable that critical values of these statistics
are not readily available for 5 samples (n) and 2-20 assessors (m). The values available have
been tabulated to validate the simulation process and largely do so. These values appear to
have been smoothed and hence do not fully reflect the integer nature of the data.

It is our opinion that the simulation values are the most trustworthy estimates of the critical
values. The % approximation is too imprecise to be useful and so the F approximation is to
be preferred in the absence of values from a simulation study.
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Table 1 - Friedman Statistics (S samples) — Critical Values

The critical values are derived in parallel with Kendall’s Coefficient of Concordance and S.

Based on 1 million simulations.

Probability (%)
Assessor 50 30 20 15 10 5 1 0.1
2 4.00 5.20 6.00 6.40 6.80 7.20 7.60 8.00

3.47 5.07 6.13 6.67 7.20 827 9.87 10.93

3.40 5.00 6.00 6.60 7.40 8.60 11.00 13.00

3.52 4.96 5.92 6.72 7.52 8.80 11.52 14.24

3.54 4.91 6.06 6.63 7.66 9.03 12.00 15.43

3.50 4.90 6.00 6.70 7.60 9.10 12.20 15.80

3
4
5
6 3.47 4.93 6.00 6.67 7.60 8.93 11.73 15.07
7
8
9

3.38 4.89 5.96 6.67 7.64 9.16 12.36 16.27

10 3.44 4.96 6.00 6.64 7.68 9.20 12.40 16.40
11 3.42 4.87 6.04 6.69 7.71 9.24 12.51 16.65
12 3.47 4.87 6.00 6.73 7.67 9.27 12.60 16.80
13 3.38 4.92 5.97 6.71 7.69 9.29 12.68 17.05
14 3.43 491 6.00 6.69 7.71 9.31 12.69 17.03
15 3.41 491 6.03 6.72 7.73 9.33 12.75 17.17
16 3.40 4.90 6.00 6.75 7.75 9.35 12.80 17.20
17 3.44 4.89 5.98 6.73 7.72 9.32 12.80 17.27
18 3.42 4.89 6.00 6.71 7.69 9.33 12.84 17.38
19 3.41 4.88 6.02 6.74 7.71 9.35 12.84 17.39
20 3.40 4.92 5.96 6.72 7.72 9.36 12.88 17.48
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Table 2 -Kendall’s Coefficient of Concordance W (5 Samples) — Critical Values

The critical values are derived in parallel with Friedman’s Statistic and S.

Based on 1 million simulations.

Probability (%)
Assessor 50 30 20 15 10 S 1 0.1
2 0.50 0.65 0.75 0.80 0.85 0.09 0.95 1.00
3 0.29 0.42 0.51 0.56 0.60 0.69 0.82 0.91
4 0.21 0.31 0.38 0.41 0.46 0.54 0.69 0.81
5 0.18 0.25 0.30 0.34 0.38 0.44 0.58 0.71
6 0.14 0.21 0.25 0.28 032 0.37 0.49 0.63
7 0.13 0.18 0.22 0.24 0.27 0.32 0.43 0.55
8 0.11 0.15 0.19 0.21 0.24 0.28 0.38 0.49
9 0.09 0.14 0.17 0.19 0.21 0.25 0.34 0.45
10 0.09 0.12 0.15 0.17 0.19 0.23 0.31 0.41
11 0.08 0.11 0.14 0.15 0.18 0.21 0.28 0.38
12 0.07 0.10 0.13 0.14 0.16 0.19 0.26 0.35
13 0.07 0.09 0.11 0.13 0.15 0.18 0.24 0.33
14 0.06 0.09 0.11 0.12 0.14 0.17 0.23 0.30
15 0.06 0.08 0.10 0.11 0.13 0.16 0.21 . 0.29
16 0.05 0.08 0.09 0.11 0.12 0.15 0.20 0.27
17 0.05 0.07 0.09 0.10 0.11 0.14 0.19 0.25
18 0.05 0.07 0.08 0.09 0.11 0.13 0.18 0.24
19 0.04 0.06 0.08 0.09 0.10 0.12 0.17 0.23
20 0.04 0.06 0.07 0.08 0.10 0.12 0.16 0.22
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Table 3 — S (5 samples) — Critical Values

The critical values are derived in parallel with Friedman’s Statistic and Kendall’s coefficient

of concordance. Based on 1 million simulations.

Probability (%)
Assessor 50 30 20 15 10 5 1 0.1
2 20 26 30 32 34 36 38 40
3 26 38 46 50 54 62 74 82
4 34 50 60 66 74 86 110 130
5 44 62 74 84 94 110 144 178
6 52 74 90 100 114 134 176 226
7 62 86 106 116 134 158 210 270
8 70 98 120 134 152 182 244 316
9 76 110 134 150 172 206 278 366
10 86 124 150 166 192 230 310 410
11 94 134 166 184 212 254 344 458
12 104 146 180 202 230 278 378 504
13 110 160 194 218 250 302 412 554
14 120 172 210 234 270 326 444 596
15 128 184 226 252 290 350 478 644
16 136 196 240 270 310 374 512 688
17 146 208 254 286 328 396 544 734
18 154 220 270 302 346 420 578 782
19 162 232 286 320 366 444 610 826
20 170 246 298 336 386 468 644 874
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Table 4 — Friedman’s Statistic (5 Samples) — Critical Values

The critical values are derived using % approximation.

Probability (%)
Assessor 50 30 20 15 10 5 1 0.1

3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47

3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47

3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47

3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47

3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47

3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47

2
3
4
5
6 3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47
7
8
9

3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47

10 3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47
11 3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47
12 3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47
13 3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47
14 3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47
15 3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47
16 3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47
17 3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47
18 3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47
19 3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47
20 3.36 4.88 5.99 6.75 7.78 9.49 13.28 18.47

From the table it can be seen that the values for each significance level are independent of the

number of assessors.
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Table 5 — Friedman’s Statistic (5 Samples) Critical Values

The critical values are derived using variance ratio (F) approximation.

Probability (%)

Assessor 50 30 20 15 10 S 1 0.1

2 4.00 5.09 5.70 6.05 6.43 6.92 7.53 7.85
3 3.77 5.06 5.88 6.39 7.01 7.89 9.34 10.54
4 3.66 5.03 593 6.51 7.24 8.33 10.29 12.20
5 3.59 5.00 5.96 6.57 737 8.50 10.88 13.30
6 3.55 4.98 5.97 6.61 7.45 8.75 11.28 14.08
7 3.52 4.97 5.97 6.63 7.50 8.86 11.56 14.66
8 3.50 4.97 5.98 6.65 7.54 8.94 11.77 15.10
9 3.48 4.95 5.98 6.66 7.57 9.00 11.94 15.45
10 3.47 494 5.98 6.67 7.59 9.06 12.07 15.74
11 3.46 4.94 5.98 6.68 7.61 9.10 12.18 15.97
12 3.45 4.93 5.98 6.69 7.62 9.13 12.27 16.18
13 3.44 4.93 5.99 6.69 7.64 9.16 12.35 16.34
14 3.44 4.93 5.99 6.69 7.65 9.18 12.42 16.49
15 3.43 4.92 5.99 6.70 7.66 9.20 12.47 16.61
16 3.43 4.92 5.99 6.70 7.67 9.22 12.52 16.73
17 3.42 4.92 5.99 6.70 7.67 9.24 12.57 16.82
18 3.42 4.92 5.99 6.71 7.68 9.25 12.61 16.91
19 3.42 4.91 5.99 6.71 7.68 9.27 12.64 16.99
20 3.41 491 5.99 6.71 7.69 9.28 12.67 17.06
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Table 6 — Friedman Statistics (5 Samples) — Critical Values

This table is from published information, and blanks indicate unavailable data.

Probability (%)
Assessor 50 30 20 15 10 5 1 0.1
) 7.600° | 8.000°
3 7.467° 8.533%® 10.13%® 11.47%
4 7.600* 8.000% 11.20% 13.20°
5 7.680% 8.960 % 11.68% 14.40°
6 3.600° 5.067° 6.133¢ 6.800° 7.733% | 9.067™ | 11.87%° 15.20°%
7 3.657° 5.029¢ 6.171° 6.743° 7.771% 9.143%° | 12.11°%¢ 15.66%*
8 3.600° 5.000° 6.100° 6.800° 7.700%* 9.200 ¢ 12.30%° 16.00%*
9 7.733% 9.244 % 12.44% 16.36°
10
11
12
13
14
15
16
17
18
19
20

a Table 24 — Lindley, D.W. and Scott, W.F. (1984). New Cambridge Statistical Tables.
® Table 4.3 — Neave, H.R. (1988). Statistics Tables (2™ Edition), Allan and Unwin, London

®Odeh, R.E. (1997). Extended tables of the distribution of Friedman’s S-statistic in the two-

way layout. Communications in Statistics and Simulation Computations, B6(1), 29-48.

S/REP/40315/1

Page 61 of 73

JAM/REPORTS/R40315-1.DOC




Table 7 — Coefficient of Concordance W (5 Samples) — Critical Values

No published data were found.

Probability (%)
Assessor 50 30 20 15 10 5 1 0.1
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Table 8 — S (5 Samples) — Critical Values

This table is from published information, and blanks indicate unavailable data.

Probability (%)
Assessor 50 30 20 15 10 5 1 0.1
2
3 6442 75.62
4 88.44 109.32
5 112.3a | 14284
6 136.1a2 | 176.12
7
8 183.7a | 242,74
9
10 23122 | 309.12
11
12
13
14
15 349.8a | 47524
16
17
18
19
20 468.52 | 641.22

a Table R — Siegal, S. (1956). Non-parametric Statistics for the Behavioural Sciences.
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Table 9 — S (5 Samples) — Critical Values

This table is based on a personal communication (Tony Hunter, BioSS) from Mark A. van de

Wiel. Not yet published. Blanks indicate no available data found.

Probability (%)

Assessor 50 30 20 15 10 5 1 0.1
2 36 38 40 *
3 56 64 76 86
4 76 88 112 132
5 96 112 146 180
6 116 136 178 228
7 136 160 212 274
8 154 184 246 320
9 174 208 280 368
10 194 232 312 414
11 214 256 346 460
12 232 280 378 506
13

14

15

16

17

18

19

20
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APPENDIX 6: THE ‘EGG SHELL’ PLOT PROCEDURE ADAPTED

Principal

The ‘egg shell’ plot (Nas ef at., 1994) is based on using cumulative ranks, and judging each
assessor against a baseline. It was first used to evaluate assessor performance in descriptive
analysis, but may have potential for ranked data. There are a number of features of ‘egg shell’
plots that can be used to determine performance, and these will become apparent in the

following sections.

Procedure

This method offers a way of achieving a consensus ranking for a set of samples free of

arbitrary decisions.

The first step is to tabulate the rankings for each assessor, together with the defined ‘true’
ranking. Nas ef al. (1994) reports that if a consensus rank is required (no true rank available),
then the consensus is obtained by ranking the scores of the first principal component, after
performing principal component analysis where assessors are the variables. However, for this

application, the ‘true’ ranking will be used.
The next step is to replace each assessor’s ranks by cumulative ranks, cumulated in the true
rank order (or consensus order). This can be achieved by ensuring the table of ranks is sorted

by the ‘true’ rank order.

The cumulative rank is then calculated for an assessor who ranks all the samples the same, in

other words finds no difference between them. This can be done using the following formula.

(1 +n)/2; [(1 +n)/2] *2; ........ n = number of samples
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Finally, the cumulative scores are usually plotted against the true rank, and for each assessor

the cumulative scores are joined together to give one line per assessor.

Interpretation of Egg Shell Plots

The area between the lower curve, or the shell itself, and the curve corresponding to a given
assessor, is a measure of this particular assessor’s agreement with the consensus of the panel
(or the with the true value, if such a value exists) see Figure 1. Agreement is here defined as
ranking the samples in the same order as the consensus/true value. The extreme disagreement
with the consensus is an assessor who has ranked the samples in exactly the opposite order as
the consensus. This assessor’s contribution to the eggshell plot would be a whole egg, Figure

2. Note, however, that the likeness to a whole egg is not too obvious with only 5 samples

being ranked.
Figure 1
3~
2
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Figure 2: Total disagreement
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To distinguish all the assessors in a panel is often difficult, or downright impossible.

Therefore, one often finds the eggshell plots divided into two parts: one plot showing all the

assessors in the panel, and one part consisting of small plots each representing a single

assessor, Figures 3 and 4.

Figure 3 - All assessors
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Figure 4
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It can be proved that the area between a single assessor’s curve and the outer shell is

proportional to 1 minus Spearman’s rank correlation (Hirst and Nees, 1994). In other words:

small area indicates large rank correlation; large area indicates small rank correlation. This is

the theoretical basis for stating that in Figure 4, Assessor 7 is in a sense ‘worse’ than Assessor

5.
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APPENDIX 7: THE RANK INTERACTION TEST

Principal

If all assessors in a panel rank the samples in the same order, then there should be no
interaction between the assessors and the samples. However, if one or more assessors ranks
the samples differently, then a cross-over interaction will occur between the samples and
assessors. Such an interaction indicates that the panel is not agreed on how the samples
should be ordered with respect to the named attribute. In analysis of variance, it is easy to
measure and test for such an interaction, yet this procedure for ranking data is less well

known.

Procedure

In experiments where there are replicated rankings for each assessor it is possible to partition
the variation between rankings into two parts. One part is due to variation within assessors
and another is due to variation between assessors. The latter can be thought of as an

interaction between sample effects and assessor effects.

The approach to this problem is repeated use of the Friedman test and was stimulated by
reading of De Kroon and Van Der Laan (1981), who tackled the problem of ranking in the

context of data collected as continuous variates.

If the Friedman test is applied to each assessor in turn, a Chi-Squared (y?) statistic is obtained
testing how much each assessor discriminates between samples. Assessors who do fail to
rank the samples in a consistent way will have a small i, whilst an assessor who ranks the
samples in the same order in each replicate will have a high %>, For interest > values from a

Friedman test are bounded by zero and c. The individual > values for each assessor are
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summed to give T. Likewise the Friedman process can be applied to the whole data set
ignoring the distinction between assessors and replicates — T,. This provides an overall test of
treatment effects. By taking the difference between these two y” figures T,=T-T,, a measure

of the interaction between assessors and samples is obtained.
Formulae

n = number of samples ranked

m = number of assessors

r = number of replicates

r;, — rank for i" sample, j" assessor and k" replicate

T =T +T*+....+T"

m 12 wi( r 2
=Aiz=1{r*n*(n+l) E(I(Z::lrﬁk) _3*r*(n+l)]

3 12 m__n r 2—3* *r*( +1)
- r*n*(n+1) j=1 i=1 \k=1 i " "
12 ,,(,,, r )2 . e
Tl:m*r*n*(n+l)f=1 Z%kzﬂr”k =3rmrrt(n+l)

T'" and T, are asymptotically distributed as y* withn — 1 df
Consequently T is asymptotically distributed as %* with m(n — 1) df
T, is therefore asymptotically distributed as x> with (m — 1)(n— 1) df

S/REP/40315/1 Page 70 of 73 JAM/REPORTS/R40315-1.DOC



Example Calculations

Table 1: Rankings of 6 samples as collected by 3 assessors on 3 replicate occasions.
Assessor Rep | Samplel | Sample 2 | Sample 3 | Sample 4 | Sample S | Sample 6
1 1 2 6 3 4 5 1
2 3 6 4 5 1 2
3 1 6 3 5 2 4
2 1 2 6 1 5 4 3
2 2 5 3 6 4 1
3 3 5 1 6 2 4
3 1 4 5 1 6 2 3
2 2 6 3 5 1 4
3 4 3 1 5 6 2
Table 2: Sum of ranks over replicates.
Assessor | Sample1 | Sample2 | Sample3 | Sample 4 | SampleS | Sample 6
1 6 18 10 14 8 7
2 7 16 5 17 10 8
3 10 14 5 16 9 9
Table 3: Sum of ranks over replicates and assessors.
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5§ Sample 6
23 48 20 47 27 24
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Calculations

12
I 2 2 2 2,921 72)_3
T = 326x(6 1)(6 +18°+10°+14°+8 +7) x3x(6+l)>

=10.24

T°=1157
7> =738
T =T'+T°+7°

=2919

12
T, ) (23? + 482 + 207 + 472 + 27 + 24%) - 3x3x(6 + 1)

T 3x3x6* (6 + 1
= 2519

Tz'—‘T —'Tx

=4.00
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Interpretation

The null hypothesis H, is the assessors 1, 2 ....3 cannot order the samples consistently.

Although T,, T, and T, are asymptotically distributed as x> with (6-1) = 5 df, this
approximation is not sufficiently good for our purpose. Instead values of the test statistic

from published Tables must be used:

T,=633  p=0.052
T,=833  p=0.012
T,=10.33 p=0.0017

Consequently all the assessors show statistical evidence of being able to rank the samples

consistently (p>0.05). Assessors 1 and 2 are more consistent than assessor 3.

Overall (aggregating over both replicates and assessors) the null hypothesis H, is that the

samples are not ordered consistently.

The test statistic T, which is again asymptotically distributed as x> with (6-1) = 5 df., is clearly

statistically significant — p<0.001 (see test values above.

The interaction can be tested by the statistic T, =4.00. This is asymptotically distributed with

(3-1) x (6-1) = 15 df. Clearly there is no statistical evidence of interaction.
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